Reliability of the methods applied to assess age minority in living subjects around 18 years old
A survey on a Moroccan origin population

P.M. Garamendi,*, M.I. Landa, J. Ballesteros, M.A. Solano

Basque Legal Medicine Institute, Vizcaya Division, Forensic Clinical Department, Spain
University of the Basque Country, U.P.V.-E.H.U., Neuroscience Department, Spain

Received 10 March 2003; accepted 31 August 2004
Available online 10 November 2004

Abstract

We present a review of a population of 114 immigrant Moroccan males for which an age estimation was requested. The subjects’ real chronological age was confirmed by the Moroccan Embassy in Spain. The confirmed age range was between 13 and 25, with an average age of 18.1 years and a standard deviation of 2.03. The following tests were performed to arrive at the forensic estimation of age: general physical examination, carpus X-ray (Greulich and Pyle method) and dental orthopantomography to determine the degree of maturity of the third inferior molars (Demirjian’s method). Carpus X-ray (skeletal age) was the most useful method, followed by Demirjian’s method (dental age), as prediction factors of a chronological age of over or under 18. The combination of skeletal and dental age variables represented a significant improvement in the prediction of the chronological age of the subjects in this population, reducing the number of ethically unacceptable test errors to a minimum.

Keywords: Age determination by skeleton; Bone age; Dental age; Age minority; Morocco

1. Introduction

Spain is the second country in the European Community with the largest number of illegal undocumented immigrants. Minors are subject to special Spanish and community regulations which are different from those applied to subjects over 18. According to these regulations, under 14-year-old subjects are exempt from criminal liability, minors between 14 and 18 are subject to special criminal standards, and persons over 18 but under 21 could be subject in the future in Spain to the criminal standards now applied to minors under 18. Illegal immigrants under 18 may be placed under the guardianship of the authorities.

Both in a clinical setting and in the specific field of forensic medicine, there is a growing demand by the courts for appropriate medical tests aimed at estimating the approximate age of supposed minors without documentation.

In the year 2000, the Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin published its guidelines for the forensic estimation of the chronological age of living individuals subject to criminal proceedings [1]. These guidelines recommended the performance of the following tests to determine majority or minority of age (18 years) for criminal purposes, in living subjects:
1. Physical examination: anthropometric measurements (weight, height, build); inspection of signs of sexual maturity; identification of diseases which could alter maturity development.

2. X-ray examination of the left hand.

3. External examination of the condition of teeth and dental X-ray.

4. X-ray examination of the medial clavicular epiphyseal cartilage [2], to confirm if the chronological age is over or under 21.

When interpreting the results, the guidelines themselves recommend that data from the tests above should be compared with reference studies relevant to the specific individual in question. They finally recommend that, when the final expert assessment has been made, the results of each of the tests performed should be recorded separately and that the age estimated should be identified as the most probable, specifying the degree of probability of each estimated result.

In Spain, there are several studies on our national population according to which the recommended tests can be interpreted with the pertinent adjustments in assumed minors of Spanish origin. Most illegal immigrants without documentation are from Morocco. In this case, the forensic estimation of their age is difficult because no systematic studies have been conducted in that country that could inform us of the maturity parameter variations applicable to its population.

This article presents a study conducted in a population of immigrant males, supposedly minors and of Moroccan origin. The purpose of the study was centred on analysing the efficacy of the tests available to estimate approximate chronological age and, particularly, the reliability of an age estimation of 18 or more, attempting to reduce the number of ethically unacceptable errors to a minimum.

2. Material and methods

The population sample on which the study was conducted consisted of a total of 114 males of Moroccan origin, supposedly minors, and illegal immigrants in Spain. The original studies were requested by the Juvenile Division of the Public Prosecutor’s Office of the Basque Country.

Confirmation of the subject’s date of birth was obtained based on the interpretations of the carpus X-rays by investigators PMG and MIL. She received no specific instructions on how to apply the methods from the other two authors. This study has been based on the interpretations of the corpus X-rays by investigators PMG, MIL and MAS and the interpretations of the orthopantomographies by investigators PMG and MIL.

The data from the X-ray examination of dental maturity was centred on assessing the stage of evolution of the third inferior molars in both dental arches. The degree of maturity was quantified by Demirjian’s stage system, unaltered, stages A–H (Table 2) [4]. Although not originally devised by Demirjian et al. to quantify third molar maturation, the method has been previously applied for this purpose in several scientific papers. Demirjian’s stage system has been applied in this research following A.B.F.O. (American Board of Forensic Odontologists) recommendations published in 1993 by Miner et al. [5]. The quantification of the third superior molars was ruled out since it was impossible to interpret them on the orthopantomography plates because bone contours overlapped the molars, making it difficult to see them entirely.

The hand and wrist X-rays and the dental orthopantomography were performed in the Basurto Hospital’s radiodiagnosis department. The data obtained from the hand and wrist X-rays were interpreted using the Greulich and Pyle method [3].

The results of the above studies were analysed by the fourth author, a specialist in statistical research in biome-
dical science (JB). Agreement between observers in their X-ray interpretations was analysed by the intraclass correlation coefficient (ICC) [6] for the Greulich and Pyle method, and with the quadratic weighted kappa index for the dental orthopantomography [7]. The validity of the criterion of the methods under study in relation to chronological age at the time of examination was evaluated by analysing the sensitivity and specificity values and the likelihood ratios for positive and negative results, according to different cut-off points [8]. Finally, the forensic age determination diagnosis methods for which the best validity of criterion values had been obtained, were compared by calculating the area under the ROC curve [9].

3. Results

3.1. General description

The study was conducted on a population of 114 male subjects of Moroccan origin, of known chronological age (mean age 18.1 years, S.D. = 2; range: 13–25). Of these, 62 were 18 or over at the time of these assessments.

3.2. Agreement between observers

For the Greulich and Pyle method (114 subjects assessed by 3 observers), the intraclass correlation coefficient (ICC) is 0.93 (CI 95%: 0.91–0.95), whereas for Demirjian’s technique (84 subjects assessed by 2 observers) the value of the weighted kappa estimator is the same for both third inferior molars (kappa = 0.88; CI 95%: 0.66–1.0). In both cases, the level of agreement is very high.

The validity of the chronological age of 18 or over criterion in relation to the results obtained by the Greulich and Pyle method (GP skeletal age) is analysed in Table 3.

The validity of the chronological age of 18 or over criterion in relation to the results obtained by Demirjian’s method (dental age) for both third inferior molars, is analysed in Table 4.

3.3. Comparison of the validity of the Greulich and Pyle method and Demirjian’s technique

In the 80 subjects assessed by both methods, a comparison of the area under the ROC curves (see Fig. 1) showed

<table>
<thead>
<tr>
<th>Cut-off point (estimated age, years)</th>
<th>TP</th>
<th>FN</th>
<th>FP</th>
<th>TN</th>
<th>Sensitivity (CI 95%)</th>
<th>Specificity (CI 95%)</th>
<th>LR+ (CI 95%)</th>
<th>LR− (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/17</td>
<td>52</td>
<td>10</td>
<td>23</td>
<td>28</td>
<td>0.84 (0.72–0.92)</td>
<td>0.55 (0.40–0.69)</td>
<td>186 (1.39–2.64)</td>
<td>0.29 (0.16–0.53)</td>
</tr>
<tr>
<td>17/18</td>
<td>42</td>
<td>20</td>
<td>11</td>
<td>40</td>
<td>0.68 (0.55–0.79)</td>
<td>0.78 (0.65–0.89)</td>
<td>3.14 (1.88–5.55)</td>
<td>0.41 (0.27–0.59)</td>
</tr>
<tr>
<td>18/19</td>
<td>28</td>
<td>34</td>
<td>7</td>
<td>44</td>
<td>0.45 (0.32–0.58)</td>
<td>0.86 (0.74–0.94)</td>
<td>3.29 (1.64–6.93)</td>
<td>0.64 (0.48–0.81)</td>
</tr>
</tbody>
</table>

Greulich and Pyle method (N = 113). Area under the ROC curve = 0.77 (CI 95%: 0.68–0.85). TP: true positives; FN: false negatives; FP: false positives; TN: true negatives; LR+: likelihood ratio for a positive result; LR−: likelihood ratio for a negative result.
that there were no significant differences between them ($\chi^2 = 0.08$ in 2 d.f., $P = 0.96$).

The validity of the chronological age of 18 or over criterion in relation to the evolution of the pubic hair variation parameter (Tanner’s method) is specified in Table 5.

3.4. BMI results

These results were evaluated in 112 subjects in relation to its variation from known chronological age. The validity of the criterion is low, with an area under the ROC curve of 0.62 (CI 95%: 0.52–0.73). Pearson’s correlation between BMI and age was also low ($r = 0.27$).

The BMI by age group, as an indicator of under or over nutrition, indicates an acceptable distribution. The WHO considers the following as normal BMI values: from 16 to 23 for minors of 14 and under, 18 to 23 for subjects between 14 and 19 years of age, and 18 to 25 for subjects of 19 or over. In the group of minors under 14 there was only one case with a BMI of 17.07. For ages from 14 to 19 (77 cases), the mean BMI was 20.6, with a standard deviation of 2.05, a median of 20.5 and maximum and minimum values of 28.69 and 16.18, respectively. Among the subjects over 19 (36 cases), the mean BMI was 20.8 with a standard deviation of 2.0, a median of 20.8 and maximum and minimum values of 27.4 and 18.0, respectively.

Table 6 analyses the results of the validity of the chronological age of 18 or over criterion in relation to a joint assessment by Demirjian’s method for both molars, and the Greulich and Pyle method.

![Fig. 1](attachment:fig1.png)

Fig. 1. Comparison of method validity for Greulich and Pyle and Demirjian’s technique in right and left third inferior molars. A comparison of the areas under the ROC curve shows no significant validity differences for majority of age (18 or over) status (χ^2 test = 0.08 in 2 d.f., $P = 0.96$).
4. Discussion

The application of the guidelines of the Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin in forensic practice, not only implies a need to consider the results of the tests performed in the light of prior scientific studies, but also involves the difficulty of deciding which results interpretation method is the most appropriate, and its particular degree of reliability.

4.1. Physical examination, anthropometrical variables

The maturation of secondary sexual features is usually quantified according to the system proposed by Tanner [10]. This system quantifies the following parameters: development of axillary hair (A1–A3), pubic hair (P1–P5), mammary gland development (B1–B5), external genital development (G1–G5), testes volume (using Prader’s orchidometer), length of the flaccid penis, menarche, sperm

Table 5
Criterion validity (chronological age ≥ 18)

<table>
<thead>
<tr>
<th>Cut-off point (pubic hair states)</th>
<th>TP</th>
<th>FN</th>
<th>FP</th>
<th>TN</th>
<th>Sensitivity (CI 95%)</th>
<th>Specificity (CI 95%)</th>
<th>LR+ (CI 95%)</th>
<th>LR- (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3/P4</td>
<td>47</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>0.94 (0.83–0.99)</td>
<td>0.22 (0.10–0.38)</td>
<td>1.20 (1.02–1.51)</td>
<td>0.28 (0.08–0.90)</td>
</tr>
<tr>
<td>P4/P5</td>
<td>32</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>0.64 (0.49–0.77)</td>
<td>0.49 (0.32–0.66)</td>
<td>1.25 (0.87–1.86)</td>
<td>0.74 (0.45–1.22)</td>
</tr>
<tr>
<td>P5/P6</td>
<td>5</td>
<td>45</td>
<td>5</td>
<td>32</td>
<td>0.10 (0.03–0.22)</td>
<td>0.87 (0.71–0.95)</td>
<td>0.74 (0.25–2.25)</td>
<td>1.04 (0.89–1.27)</td>
</tr>
</tbody>
</table>

Tanner method (N = 87). Area under the ROC curve = 0.57 (CI 95%; 0.45–0.69). TP: true positives; FN: false negatives; FP: false positives; TN: true negatives; LR+: likelihood ratio for a positive result; LR−: likelihood ratio for a negative result.

Table 6
Criterion validity (chronological age ≥ 18) for a combination of the Greulich method (17/18) and Demirjian’s technique (states G/H) (N = 80)

<table>
<thead>
<tr>
<th>Criterion +</th>
<th>Criterion -</th>
<th>Sensitivity (CI 95%)</th>
<th>Specificity (CI 95%)</th>
<th>LR+ (CI 95%)</th>
<th>LR− (CI 95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test +</td>
<td>9</td>
<td>1</td>
<td>0.21 (0.10–0.37)</td>
<td>0.97 (0.86–0.99)</td>
<td>8.14 (1.45–48.74)</td>
</tr>
<tr>
<td>Test -</td>
<td>33</td>
<td>37</td>
<td>0.21 (0.10–0.37)</td>
<td>0.97 (0.86–0.99)</td>
<td>8.14 (1.45–48.74)</td>
</tr>
</tbody>
</table>

LR+: likelihood ratio for a positive result; LR−: likelihood ratio for a negative result.

Fig. 2. Histogram of distribution of frequency of results of differences between known age and bone age estimated by examiner 1 using the Greulich and Pyle method. >0 difference results indicate that known chronological age is greater than the bone age estimated by the GP atlas. <0 difference results indicate that known chronological age is lower than the age estimated by the GP atlas. Differences of 0 indicate that both ages coincide.
production and voice features. Irrespective of the difficulties involved in interpreting results with inter- and intra-observer differences, which have not been well studied, there are few series analysing the evolution of these parameters with chronological age in different populations, and the few that there are, are fundamentally centred on developed countries.

Anthropometrical variables are of little use as predictors of estimated forensic age, but they may be useful as factors suggesting the existence of pathological conditions which, since they delay or enhance maturity, may significantly alter a comprehensive interpretation of the results.

4.2. X-ray study of the left carpus

The skeletal age parameter obtained from an X-ray examination of the left hand is a statistical concept derived from clinical experience that is useful for strictly clinical purposes when estimating a subject’s individual rate of maturity, and predicting phenomena such as expected height. In different population studies it has been seen that this parameter is not absolutely correlated to the subjects’ actual chronological age. Nevertheless, this parameter is considered to be more physiologically stable than dental maturation and is therefore the main parameter at our disposal for clinical and forensic purposes to estimate chronological age at the end of adolescence with some accuracy.

The choice of the method for assessing the skeletal age of the carpus that is most appropriate for estimating approximate age is subject to controversy. The three models available (atlas systems, such as the GP method; numerical systems, such as the TW2 (Tanner–Whitehouse) or CASAS method; and mixed systems such as FELS) have their supporters and detractors. The TW2 method is more widely used in Europe and the GP technique on a world-wide scale. Their results, for the purposes of this type of study, can be applied together, but GP has the advantage that it is more economical, since it takes less time [11]. It could therefore be considered as the method of choice for this type of study.

The interpretation of results in relation to the population under study reveals significant differences related to the population sample. Differences have been detected, according to how the sample is affected by racial, socio-economic and pathological demographic factors.

There is a large number of studies in the context of ethnic and racial impact, some of them based upon dubious sample selection and often contradictory results, mainly conducted on populations of Caucasian Europeans, Caucasian North Americans, other North American ethnic groups, different Mongoloid and Caucasian populations from Asia and some incomplete studies on central and south African populations.

The most recent studies in Europe appear to indicate that European Caucasians are close to the maturity rates marked by the GP and the TW2 system (Italy [12], Belgium [13], Holland [14], Finland [15], Denmark [16], Sweden [17], Spain [18], Austria [19]). In some cases, the differences from the original methods were small but so statistically signifi-
The pathological factors clearly identified as bone age evolution rate alteration factors include, among others, nocturnal enuresis, GH deficit, the practice of competitive sports, skeletal malformations or the effects of physical agents, such as cold.

4.3. Dental examination

With regards to external and X-ray dental examinations, there are different studies and result interpretation variants. Initially, since this maturation parameter is less influenced by environmental circumstances than other maturation parameters, it could be especially useful for the purpose of our research.

The external examination, centred on the eruption or not of the third molars, is too inaccurate, due to the highly variable appearance of this physiological phenomenon. It is therefore more appropriate to evaluate the development of the third molars, which is a more stable phenomenon within its high degree of variability. There are several methods to quantify the degree of maturity, principally Demirjian’s original graphic method [4] or its variants, and some numerical methods, like the technique proposed by Kulman [35]. Although not originally devised to test third molars development, eight-stage Demirjian’s method is one the most practical, easy to use and world-wide used [5,36]. It has been previously applied on forensic purposes in different scientific papers to establish third molar’s maturation degree. Nevertheless, there are many other methods to quantify dental maturity of third molar most of them based on X-ray findings similar as in Demirjian’s.

All the series studied appear to suffer from the same defect, in that they do not guarantee with a sufficient degree of reliability, that a subject with a stage of less than H (crown mineralization and root development incomplete) is not under 18 years of age, or that a subject in stage H (crown mineralization and root development complete) is not over 18 years of age based on the grade of third molar formation using eight grade scheme developed by Demirjian et al. [4] (white males sample).

Morocco in WHO nutritional status group 3 (5–19% of the population undernourished), similar to other Northern African countries like Algiers, eastern countries like Indonesia or the present Russian Federation. As for its ethnic distribution, in our sample all the subjects had a Caucasian appearance and none of them presented a nutritional deficit. Since we do not know the minors’ prior socio-economic status, the BMI was used as an indicator of their nutritional status, following WHO recommendations. None of the subjects under study referred to either a disease identified as a bone and dental maturation altering factor, or competitive sports or intense physical activities.

The primary objective of our study was to attempt to verify the degree of validity of estimated forensic age results based on the tests described, compared with the known chronological age of an undocumented immigrant population from Morocco. Our interest was focused on confirming the specific degree of reliability when estimating whether forensic age is 18 or over.

In the interpretation of the results, our research provides several conclusions of practical interest.

The degree of agreement between the results obtained by the different investigators, irrespective of their prior experience, is high. This conclusion leads us to consider that the direct assessment of the radiographs performed can be carried out both by doctors experienced in such an interpretation and by non-experienced physicians.

In our series, the degree of maturity of secondary sexual features, in particular the evolution of pubic hair, showed that subjects with a stage of less than P3 are usually under 18. However, the statistical significance of this result is insufficient, as revealed by the likelihood ratios both for positive and negative results (Table 5). It can therefore not be considered a valid age diagnosis method.

The Greulich and Pyle method’s X-ray study of the carpus (skeletal age) appears to be the most powerful prediction factor for chronological age. The results show that in this sample there is a high coincidence between the age estimated by this method and the known chronological age. The mean difference between the two is 1.07 with a standard deviation of 1.76 (chronological age older than age estimated by GP); the median difference was 0.9 year and the mode was –1.0 year. These differences are due to the fact that a significant group of subjects (36 cases) chronologically exceed the maximum age considered for the method in question (19 years) (Fig. 2). The likelihood ratios for positive results of the confirmation of the hypothesis that chronological age is effectively at 18 years in relation to the age of 18 and 19 estimated by the Greulich and Pyle method are acceptable (values of 3.00 or over), but the likelihood ratios for negative results are too high (over 0.20) (Table 3). The latter shows that as an isolated test, the Greulich and Pyle method is a good, but not optimal, way of diagnosing age.

The study of the degree of dental maturity (dental age), although it is statistically a less powerful predictor of chronological age, is however statistically significant.
The likelihood ratios for a positive result confirming the hypothesis that chronological age is effectively over 18 for the results in both third inferior molars are also acceptable, but once again, the likelihood ratios for negative results are higher than they should be (Table 4). These results show that as an isolated test, Demirjian’s technique applied to the assessment of third molar development is also a good, but not optimal, way of diagnosing age.

The difference in the efficacy of both methods when confirming or ruling out a chronological age of 18 or over is minimal. The areas under the ROC curve are 0.73 for the Greulich and Pyle method, and 0.72 for Demirjian’s technique in either of the two third inferior molars, and the χ^2 test shows no significant differences between the two methods (Fig. 1). These results show that both methods are comparable in their efficacy confirming a chronological age of 18 or over.

Nevertheless, the statistical results show that both methods on their own have too high an error rate, and that they should therefore not be considered as optimal diagnostic methods. The errors occurring in their application can be classified into two types on forensic practice purposes: technically unacceptable errors and ethically unacceptable errors. The errors derived from a forensic age estimation indicating that a subject actually over 18 is a minor fall into the first class. Incorrect estimates of this kind lead to a more benevolent criminal treatment of these subjects, normally reserved for minors, and they also generate social expenses derived from the need for special protective measures. However, errors indicating that minors are over 18 can be classified as ethically unacceptable, since they lead to a violation of minors’ rights. Consequently, in forensic age diagnosis, the tests methods used have to reduce technically unacceptable to a minimum, but it is even more important for ethically unacceptable errors to disappear, especially in cases involving the possible criminal liability of the supposed minor.

Finally, our series shows that the combination of the two chronological age prediction factors represented a significant increase in the efficacy of the prediction that a subject was under the 18-year-old age limit or not. Table 6 shows that the combination of a Greulich and Pyle result of 18 or 19 years of age with an H result in both third inferior molars by applying Demirjian’s technique limits the number of false positive results (ethically unacceptable errors) to 1 subject in a series of 80; however, this is at the expense of an important increase in the number of false negative results (technically unacceptable errors).

From the practical perspective applied to forensic medicine in Spain and most European countries, the above results are of special importance if we consider the fact that, both from a criminal viewpoint and according to undocumented immigrant acceptance policies, the age limit for the need to adopt urgent criminal or acceptance measures is 18 years.

Our main purpose was centred on analysing the reliability of a forensic age estimation of over or under 18 in a Moroccan population basing age estimations on the tests recommended by the Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin. So, we needed to apply a statistical analysis methodology different from that applied to prior studies. The statistical analysis methodology was aimed at evaluating the relative validity of the diagnostic methods used for the specific purpose established in our research, not at providing a mere statistical description of the findings.

In any case, our results should be considered with caution, since the sample selection was affected by two important restraints. The first lies in the fact that only subjects of the male sex were assessed. According to other prior series, it would not be appropriate to assume absolutely that the results obtained for males can be fully extrapolated for females. The second restraint, more important still for the full validation of the study, is the limited reliability of the birth register in the country of origin of our supposed minors. According to UNICEF data, in 1998 Morocco was a country in which a birth certificate was officially required only for events such as school registration and marriage, but not for others such as health care during the paediatric period or for children’s vaccination programmes. It is estimated that only 70–80% of all births are registered. On the other hand, the birth registration system in the Kingdom of Morocco is too slack in its application of registration rules, since a significant number of births occur outside a hospital environment. All this means that births occurring on Moroccan territory are not always registered immediately and, when they are recorded, the registered date of birth is not always reliable. This could introduce an incorrect classification bias into the truth criterion used (chronological age of the subjects) and consequently worse results in the validity indicators reported for the forensic age identification methods than would be expected with a strict truth criterion. We therefore have to consider the results of our study with some reserve, in spite of our attempt to use an appropriate method. In fact, a later review of the results, interviewing the supposed minor and his family, showed that the only false positive case (ethically unacceptable) obtained from the combined use of bone age and dental age could actually have corresponded to a false registration of chronological age, lower than the real age.

5. Conclusions

1. For the forensic estimation of age in supposed undocumented minors, we recommend the application of the diagnostic guidelines proposed by the Arbeitsgemeinschaft für Forensische Altersdiagnostik der Deutschen Gesellschaft für Rechtsmedizin.

2. For the forensic estimation of age in undocumented male subjects of Moroccan origin, the direct estimation of the results of applying the Greulich and Pyle method or the estimation of age based on Demirjian’s technique applied to the third inferior molars may be acceptable. However,
the degree of error in the results obtained by both methods has to be considered by the physician as considerable, and may represent technically and ethically unacceptable errors.

3. For the forensic estimation of age in undocumented male subjects of around 18 years of age and Moroccan origin, when for reasons of accuracy it is necessary to rule out the appearance of false over-18 results (ethically unacceptable errors), it is recommendable to combine the results from applying the Greulich and Pyle method and Demirjian’s technique in both third inferior molars. In these cases, the probability of false negative errors (subjects actually over 18 who are classified by the test as minors) increases significantly.

Acknowledgements

Ms Maite Rodriguez, member of the Basurto Hospital Library, without whose unselfish help it would have been impossible to gather our bibliography. Mr Carlos Sagardoy, responsible for the Zabaloetxe (Loiu) Juvenile Centre, without whose custody and concern for the situation of immigrant minors in Vizcaya, this study would not have been possible. Ms Pilar Sanchez Donate, juvenile prosecutor at the Basque Country Supreme Court, for her patient review of the legal aspects. Drs Benito Morentin and Koldo Callado for their help in setting up this research team. Drs Andreas Schmeling, Gunther Geserick and Friedrich Rösing for their sympathetic attitude and collaboration.

This study did not receive either public or private funding.

References